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The heat-conduction problem in a three-layer cylindrical system
is solved in this article for the case of a complex boundary layer
and heat sources distributed over the surface and the volume.

Cylindrical structures are used extensively in various
branches of engineering. We have numerous solutions
at our disposal for the temperature problem pertaining
to cylindrical structures, including those that are
composite [1-3]. However, the real processes are
described, as a rule, by quantitative relationships so

complex that they cannot be reducedto existing schemes.

In this paper we analyze a generalized model which
schematizes a large group of thermal problems asso-
ciated with the production operations of stamping,
extrusion, etc. [4]. Let us consider a three-component
cylindrical system: blank-boundary layer-multilayer
tool (Fig. 1). The study is carried out for the heating
stage of the first cycle in hot stamping. In the defor-
mation of a blank (0 = r = R;) with the thermal coef-
ficients 2y and a,, as well as an initial temperature
Up(r,0) = v = const for t > 0, a constant quantity of
heat w is uniformly generated per unit time per unit
volume. For the purposes of the example, the tool is
made of a two-layer material: the first layer (R, =
= r = Ry) has the thermal coefficients Ay and ay; for
the second layer (R; =r < =) we have}, and a,. We
assume the contact between the layers to be ideal. The
initial tool temperature is assumed to be equal to zero:
Uylr, 0) = Uy(r, 0) = 0.

The boundary layer is made up of two sublayers,
one of which belongs to the heated blank, with the other
a part of the tool. The corresponding thermal resis-
tances—taken with consideration of the contact resis-
tance—are denoted py; = 1/H, and p; = 1/H; (H is the
thermal conductivity). The heat of friction q is gen-
erated within the boundary layer and in those portions
of the blank and stamp that are in contact. However,
with an approach that is arbitrary to some extent, we
can assume that q is localized between the sublayers
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Fig. 1. Scheme of the generalized
model.

(Fig. 2). Applying the Kirchhoff and Ohm laws for the
"houndary layer" segment of the thermal circuit, we
obtain

o +9-—q: =0,
; Uy{Rg, 1) = Us(Ry, 1) — oo — 0191 {1)

where q4 is the flow of heat from the blank and q is
the heat flow to the stamp:

5}
Go = — Ao —— Uy (R, 1),
or

0
= — A —— U (R, 1).
or

Then, relying on (1), we will formulate the stated
problem as follows:
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Ui(Ry, 1) = U (Ry, 1),
Up (0, §) << oo, U,(oo, t) =0,
Uy {r, 0) = v = const,
Ui(r, Oy =U,(r, 0) =0. (2)

Applying the unilateral Laplace transform with
respect'to the time t,

©

Usr, s) = ‘YU,-(r, Hesdt (7=0,1, 92,
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to the boundary problem (2), in the image space we
obtain
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Fig. 2. Scheme of the boundary
layer.
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where p; =v"_s/@ and Z ,(x) denote the cylindrical func-
tions I,(x)and K,(x)—of order p—of the purely imag-
inary argument,
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For s = 0 the transforms Us;(r, s) have a branch
point, and this is easily established [5] by taking the
first terms in the series expansion of the following
cylindrical functions for the small values of the argu-
ment:
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where y = In C = 0.577 ... is the Euler constant.

Therefore, turning to the original with the Rie~
mann — Mellininversionformula, we should assume an
integration contour that is cut along the negative real
half-axis. At and within this contour the U]- (r,s) are
uniquely defined functions of s and have no poles,
which is easily proved, using asymptotic expressions
for the cylindrical functions when x >» p,
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if we investigate the behavior of these functions for
large values of s:

wday
Ags?

Y Fenfinalog 2]

8 (Aohs PoP1 + ho Pofl + k1 pf1)

O 9=/ B s

; .
! q wa,
[qxopo‘f‘qH'!'}vopoH (U———Hl + s )}

5(Aohs PoP1 + ko Poll 4- My pifl) (1)

U, (1, s)._ LA +

]

X

748

2
Uz(r, S):Tﬁl_/\,?*
ra Ve

xl/—-exp{pILRl—Ro ‘/ (r—Rx)]}

q%po+qH-+MpJ1(z;__.fL.f tway )
1 }\.Ds

5 (hoh1 PoP1 -+ Ao poH + Ay piH)

On the basis of the residue theorem, the integrals
with respect to the selected contour are equal to zero,
while on the basis of the Jordan lemma the integrals
with respect to the great arcs of the integration contour
approach zero when the radius of the great circle in-
creases without limit. At the limit, the integrals with
respect to the small circle also yield zero. Assuming

s = ayx®e™ at the upper cut line, and s = agxle™™ at

X
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the lower cut line, we then obtain *
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where
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Z,(x) are cylindrical functions—of order y—of the real
argument,

a=1y a/ay, b=y aja.

*The originals arefound for sﬁ-(r, s) on each of the
cut lines and the results are added. The functions
Us(r,t) are then determined on the basis of the inte-
gral-image theorem.



The cited solutions—involving the use of contempo-
rary computer facilities—enable us to find the tem-
perature field for sources of any duration.

Many processes, stamping in particular, are char-
acterized by sources of brief duration. An analysis
of such processes would be useful, if we rely on the
simpler solution derived for small periods of time,
proceeding from the familiar limit theorem of opera-
tional calculus. In conformity with (5), ast — 0, we
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When we use (6), it is not difficult to determine the
magnitude of the heat flow acting on the surface of the
stamping tool (r = Ry) during the period of active con~

tact:

aH
h= (

=~ {Al fexp (alhft) erfe (fy ) af) — 11+
Aohy

1

2R,

+ 1.1984B, | af + aalwt} — Aexp(ahityerfc(hy 1 ab)
+ B, -+ 1.1284aw aTt). (7)

There is obvious interest in finding q; theoretically.

NOTATION

aj is the thermal diffusivity; A is the thermal con-
ductivity; r is the instantaneous radius; R; is the ra-
dius of "blank-tool™" joint; R is the joint radius for
composite bilayer cylindrical tool; U is the initial
temperature of the blank; Uy and U, are the initial
temperatures of the cylindrical rings of the composite
bilayer tool; g is the specific heat flux due to heat of
friction; w is the volumetric output of the heat source due
to deformation; q is the power of the heat flux from
the blank; ql'is the power of the heat flux to the stamp;

- p is the thermal resistance; H is the thermal conduc-

tivity; Io(x), Li(x), Ky{x), and K;{x) are the cylindrical
(Bessel) zero~th and first order functions of pure imagina-
ry argument; y is the order of the cylindrical function:
2i erfe(x) and 41 erfc(x) are special functions.,
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